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Abstract
: Yellow fever outbreaks have re-emerged in Brazil duringBackground

2016-18, with mortality rates up to 30%. Although urban transmission has not
been reported since 1942, the risk of re-urbanization of yellow fever is
significant, as   is present in most tropical and sub-tropical citiesAedes aegypti
in the World and used to be the main vector in the past. The introgression of 

 bacteria into   mosquito populations is being trialed inWolbachia Ae. aegypti
several countries ( )as a biocontrol method againstwww.worldmosquito.org
dengue, Zika and chikungunya. Here, we studied the ability of   toWolbachia
reduce the transmission potential of   mosquitoes for yellow feverAe. aegypti
virus (YFV).

 Two recently isolated YFV (primate and human) were used toMethods:
challenge field-derived wild-type and  -infected ( Mel +) Wolbachia w Ae. aegypti
mosquitoes. The YFV infection status was followed for 7, 14 and 21 days
post-oral feeding (dpf). The YFV transmission potential of mosquitoes was
evaluated via nano-injection of saliva into uninfected mosquitoes or by
inoculation in mice.

 We found that   was able to significantly reduce theResults: Wolbachia
prevalence of mosquitoes with YFV infected heads and thoraces for both viral
isolates. Furthermore, analyses of mosquito saliva, through indirect injection
into naïve mosquitoes or via interferon-deficient mouse model, indicated 

 was associated with profound reduction in the YFV transmissionWolbachia
potential of mosquitoes (14dpf).

 Our results suggest that   introgression could be usedConclusions: Wolbachia
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 Our results suggest that   introgression could be usedConclusions: Wolbachia
as a complementary strategy for prevention of urban yellow fever transmission,
along with the human vaccination program.
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Introduction
Arboviruses impose a substantial disease burden on the human 
population1,2. Most recently, the Zika virus re-emerged in 
2014, and unexpectedly caused serious congenital infections 
in pregnant women and Zika fetal syndrome in affected  
newborns in several American countries in 2016 and 20173.  
Chikungunya virus caused massive epidemics in the Americas in 
2014 and still circulates in several countries4.

The yellow fever virus (YFV) is a member of the Flaviviridae 
family and transmitted by sylvan mosquitoes of the genus  
Haemagogus and Sabethes and Aedes aegypti in urban  
settings5–8. Monkeys are important reservoirs of YFV in sylvan 
environments. Encroachment by humans into environments  
where competent mosquito vectors and infected monkeys  
co-exist is the commonest reason for spillover of YFV trans-
mission to human populations. Although the last reported  
cases of urban transmission in Brazil occurred in 1942, in  
2016–2017, the country faced major outbreaks of the disease 
mainly in the states of Minas Gerais, Espírito Santo and Rio de 
Janeiro. In 2018, the epidemic also extended to São Paulo State9.  
According to the Brazilian Ministry of Health, from July 2017 
to April 2018, there were 1,127 YFV cases with 328 deaths. 
Although the YFV vaccine is safe and effective, it does not always 
reach populations at greatest risk of infection and there is an  
acknowledged global shortage of vaccine supply10.

Recent studies have shown that anthropophilic mosquitoes, 
such as Aedes aegypti and Aedes albopictus, as well as Brazilian 
enzootic mosquitoes, such as Haemagogus leucocelaenus and 
Sabethes albiprivus, were highly susceptible to American and 
African YFV strains11,12. Therefore, the possible resurgence of 
urban epidemics of YFV in South America has to be constantly 
monitored by public health authorities13. Population control of  
Ae. aegypti mosquitoes using insecticides has been a main-
stay of vector-borne disease control methods for decades but is 
undermined by widespread insecticide resistance. Wolbachia 
pipientis is a maternally transmitted bacterial endosymbiont and 
is naturally present in at least 40% of all insect species14. The 
World Mosquito Program is deploying Wolbachia pipientis as a  
self-sustaining disease control agent on the basis that Wolbachia 
reduces the transmission potential of Ae. aegypti mosquitoes for 
dengue15, Zika16 and chikungunya viruses17.

Here, we studied the ability of Wolbachia to suppress YFV infec-
tivity in Ae. aegypti mosquitoes. Two virus isolates were used: 
one from a human clinical sample and another one of primate 
origin. We found that Wolbachia had a major impact on virus 
replication in mosquitoes and YFV transmission via saliva, as  
determined using a mouse model.

Methods
Sample collection
The first sample named M377_IV|Human|MinasGerais_
PadreParaíso|2017-02-04 (YFV377H) was isolated from human 
serum, positive for YFV by RT-qPCR (CT = 28.95) in February, 
2017 from Padre Paraíso city (northeast of Minas Gerais state). 
The other sample named M127_IV|Primate|MinasGerais_
NovaLima|2018-01-15 (YFV127P) was isolated from the liver 

of a non-human primate found dead in January 2018, in Nova 
Lima city, in the center-south of Minas Gerais state, positive for 
YF via RT-qPCR (CT = 17.19). Sequencing of both isolates was 
performed and is described below. Viral isolation was confirmed 
by two methodologies: indirect immunofluorescence (IFA) and  
real-time PCR. IFA was performed with a monoclonal YFV 
antibody donated by Evandro Chagas Institute (Arbovirology 
and Hemorrhagic Fevers Section) and conjugated goat  
anti-mouse IgG labeled with fluorescein FITC (MP Biomedi-
cals). Images were obtained using an Olympus microscope  
model BX51 with DP72 camera and DP-2BSW software. Viral 
molecular confirmation was performed using RNA extracted 
from the culture supernatant of each isolate, followed by  
amplification of the genetic material as described below in 
the viral detection section. For mosquito infections, the YFV  
isolates were replicated in C636 cells (Ae. albopictus) cultured in  
Leibovitz 15 medium (Gibco) supplemented with 10% fetal 
bovine serum (FBS) (Gibco) for 5 days at 28 °C. Viral load was  
confirmed by RT-qPCR and later through plaque assays (PFU) 
in VERO cells (CCL81) grown in DMEM medium (Gibco) and  
3% Carboxymethylcellulose (Sigma) supplemented with 2%  
FBS (Gibco) at 37°C and 5% CO

2
18.

Nucleic acid isolation and virus genome sequencing
Viral RNA was isolated from 200µL of each sample using MagNA 
Pure 96 (Roche) following manufacturer’s recommendations.  
To confirm the viral presence in isolates, RT-qPCR was  
performed, according to Domingo et al. 201219.

A real-time nanopore sequencing strategy with previously devel-
oped primers20, was applied to both RT-qPCR-positive samples. 
For these samples, extracted RNA was converted to cDNA 
using GoScript™ Reverse Transcriptase (Promega) and random  
hexamer priming. Whole-genome amplification by multiplex 
PCR was attempted using GoTaq® qPCR Master Mix (Promega),  
the 500bp sequencing primer scheme and 35 cycles using 
the adapted protocol20. Electrophoresis (2% agarose gel) was 
used to confirm the expected bands and to purify the specific  
amplicons using Invitrogen™ E-Gel™ SizeSelect, followed by 
quantification using fluorimetry with the Qubit dsDNA High  
Sensitivity assay on the Qubit 3.0 instrument (Life Technologies).

Template was amplified with end point PCR to increase template 
concentration following the Ion Plus Fragment Library Kit 
recommendation and PCR products were cleaned-up using  
AmpureXP purification beads (Beckman Coulter). Emulsion 
PCR was performed to amplify the library using Ion PGM™  
Hi-Q™ View OT2 Kit (Thermo Fisher Scientific) and the Ion 
OneTouch 2 system (Thermo Fisher Scientific). Ion Sphere par-
ticles (ISPs) were enriched using the Ion OneTouch ES (Thermo 
Fisher Scientific). Enriched ISPs were sequenced using the 
Ion Torrent Personal Genome Machine (PGM) and the Ion  
PGM Hi-Q Sequencing kit (Thermo Fisher Scientific), with the 
Ion 314 chip. All procedures above followed manufacturer’s  
instructions.

Consensus genome sequences from fastq file were produced 
by alignment of two-direction reads by using a reference YFV 
genome. Quality control on raw sequence data have been  
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performed using FastQC21. Bowtie 2 was used for mapping reads 
to a reference using Galaxy22. Only positions with ≥ 20× genome 
coverage were used to produce consensus sequences. Regions with 
lower coverage and those in primer-binding regions were masked  
with N characters.

In order to identify the origin of the YFV genome from the sam-
ples, we performed a maximum likelihood (ML) phylogenetic 
analysis using the newly two nucleotide sequences recovered in 
this study plus 125 reference YFV complete genome sequences 
from each different genotype (South American I n=84; South  
American II n=2; West African n=23; East African n=16) already 
published in peer-reviewed journals, for which sampling year 
and geographic location is available. Full details of the reference 
sequences used are provided in Extended data: Table S1.

Consensus sequences were aligned using MAFFT v.723.  
Maximum likelihood phylogenetic trees were estimated using 
IqTree24 under a GTR + Γ

4
 nucleotide substitution model.  

Statistical support for phylogenetic nodes was estimated using a  
bootstrap approach (100 replicates).

The phylogenetic signal has been investigated with the likelihood 
mapping method by analyzing groups of four sequences,  
randomly chosen, called quartets. Likelihood mapping analyses 
was performed with the program TREE-PUZZLE by analyzing  
10,000 random quartets25.

Mosquitoes and infections
Wild type Aedes aegypti mosquitoes collected in the neighbor-
hood of Urca, Rio de Janeiro-RJ, Brazil in 2018 were reared 
in the laboratory for five generations and confirmed for the 
absence of Wolbachia (WT). Wolbachia wMel strain-containing  
mosquitoes (wMel +) were obtained from the colony maintained 
by the World Mosquito Program (WMP) Brazil laboratories 
in Belo Horizonte, which is backcrossed every five generations 
with Urca male mosquitoes. They were reared in a controlled 
environment at 27 ± 2°C and 60 ± 10% relative humidity. 
Four to six days-old female mosquitoes were starved for 20 to  
24 hours and subsequently offered YFV virus culture super-
natant mixed with washed human red blood cells (RBCs) (2:1 
ratio). The viral titer offered to mosquitoes was 4 × 105 PFU/mL 
for YFV377H and 1.4 × 106 PFU/mL for YFV127P. RBCs were 
washed three times for removal of potential YFV vaccine anti-
bodies. Mosquitoes were allowed to feed for one hour and then, 
engorged females were selected and maintained in triple con-
tainment, under BSL-2 conditions. Sucrose solution (10%) was 
offered ad libitum during the extrinsic incubation period. Viral 
load was analyzed at 7, 14 and 21 days post feeding (dpf), via 
RT-qPCR. Additionally, a subset of mosquitoes (at 7dpf) received  
an extra blood meal and were collected at 14dpf, when  
Wolbachia density and viral load was determined. The blood 
used in the infective feedings was obtained from a blood bank  
(Hemominas) through an agreement signed between both  
institutions (OF.GPO/CCO-Nr224/16). As a laboratory routine 
each blood bag is previously tested for dengue, Zika,  
chikungunya, mayaro and yellow fever, through RT-qPCR to  
rule out any cross-infection that could interfere with the results.

Mosquito saliva transmission assays
In order to check the ability of mosquitoes to transmit the virus, saliva 
samples from infected mosquitoes were individually collected at  
14 dpf. After removal of legs and wings, mosquitoes had their  
proboscis introduced into 10 µL tips, containing 50% Fetal 
Bovine Serum (FBS) (Gibco) and 30% sugar solution and allowed  
to salivate for 30 minutes. Mosquitoes and solution contain-
ing the saliva were stored at -70°C until RNA extraction of the  
heads/thoraces and/or nanoinjection of the saliva into naive  
mosquitoes (WT). Saliva samples were injected into WT mos-
quitoes, after 2 to 4 days of emergence. Each mosquito received  
276 nL and were kept for 5 days before whole body RNA  
extraction, followed by RT-qPCR.

In vivo experiments were conducted using type I interferon 
receptor deficient mice (A129−/−), SV129 background. A129-/-  

originally from The Jackson Laboratories (reference 010830) 
were obtained from Biotério de Matrizes da Universidade de São 
Paulo (USP) and kept under specific pathogen-free conditions 
at Immunopharmacology Lab at UFMG. Mice were housed in  
filtered-cages of 28x13x16 cm with autoclaved food and water 
available ad libitum on ventilated shelves (Alesco). A maximum 
of 4 mice were kept per cage. Mice were housed under  
standard conditions with controlled temperature (18–23 degrees)  
humidity (40–60%) and 12/12h dark light cycle. Sample sizes for 
in vivo studies were determined using the G*Power 3.1 software 
package. In each experiment we used 4 mice on YFV377H or  
YFV127P groups and 6 mice per group on saliva YFV 377H or 
127P infected mosquitoes (WT or wMel+) groups. Mice from 
the same litter were added to either mock- or YFV infected 
groups, or test or control groups as appropriate. No randomi-
zation protocol was utilized. For most of the experiments, no 
blinding was involved except for body weight and hind paw  
swelling analysis. Bioanalysis from viral loads and cell count 
assay experiments was blinded. Groups were divided by code-
names on the day of euthanasia. Different researchers performed 
the euthanasia or analyzed the data. Each experiment was  
replicated twice and all attempts at replication were successful. 
For the experiments, adult A129-/- mice (7 to 9 weeks old, 20-22g)  
were inoculated with 1 × 104 PFU with either YFV377H or 
YFV127P viruses’ strains or with a pool of saliva samples (n=2) 
either from the WT or wMel+ groups via subcutaneous (intra-
plantar) route/50µl paw (right hind paw). Morbidity parameters 
such as body weight loss, total and differential counts of blood 
leukocytes and paw edema were evaluated daily. Total cell counts 
were carried out in Trypan blue-stained cells in a Neubauer  
chamber and differential cell counts on blood smears stained 
with May-Grunwald-Giemsa using standard morphological  
criteria. Paw edema was assessed by measuring paw swelling  
using a pachymeter. Finally, viable viral loads and viral RNA 
were analyzed in plasma and different tissues of mice upon saliva  
inoculation, as shown below.

All animal experiments involving YFV infection and Wolbachia 
saliva inoculation were conducted following the ethical 
and animal welfare regulations of the Brazilian Government 
(law 11794/2008). The experimental protocol was approved by 
the Committee on Animal Ethics of the Universidade Federal de 
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Minas Gerais (CEUA/UFMG, permit protocol no. 84/2018). All 
surgeries were performed under ketamine/xylazine anesthesia 
and all efforts were made to minimize animal suffering. Studies 
with YFV were conducted under biosafety level 2 (BSL-2)  
containment at Immunopharmacology Lab from Instituto de  
Ciências Biológicas (ICB) at Federal University of Minas Gerais.

Viral detection on infected mosquitoes and mice
Detection of viral particles on infected mosquitoes and mice 
samples were performed through quantitative real-time PCR 
(RT-qPCR) using LightCycler® Multiplex RNA Virus Master 
(Roche), according to the previously published protocol26. RNA 
extractions were performed following manufacturer’s protocols. 
Mosquito samples were processed through the High Pure Viral 
Nucleic Acid kit (Roche), mice tissue samples (liver, spleen)  
were extracted with Trizol (Invitrogen), whereas mice lymph  
node samples were isolated with the QIAamp® Viral RNA kit  
(Qiagen). Multiplex reactions were performed with primers 
and probes described in Table 1. Reactions were performed on a 
Lightcycler96 real-time PCR machine (Roche) with the follow-
ing program: first step at 50°C for 10 min for reverse transcrip-
tion, 95°C for 30 sec for inactivation and initial denaturation and 
95°C for 5 sec followed by 60°C for 30 sec for 40 cycles. The  
reaction volume was 10 µL (5× RT-PCR Reaction Mix (Roche), 
200× RT-enzyme solution (Roche), 2.5 µM each primer  
(IDT) and 2 µM YF (target yellow fever) probe (IDT) and 1 µM 
WSPTM2 (target wMel-specific) probe and 0.7 µM RPS 17S  
(target Ae. aegypti ribosomal S17) probe. For mouse samples, 
only the YFV probe was used. A fraction (1/20) of the total  
isolated RNA was used in the reactions. Viable viral loads were 
quantified by titration assay in permissive Vero cells as described 
in Costa et al., 201227.

Statistical analysis
All statistical analyses were performed on Prism (Graphpad  
Version 7.04). Initially the D’Agostino and Person normal-
ity test was performed. Wolbachia density data as well as viral 
load were compared using the non-parametric Mann-Whitney 
test. Statistical analyzes for the mouse data were performed with 

ANOVA one-way test. The significance level was set for p values  
less than 0.05.

Results
Viral isolation and sequencing
Two plasma samples (one human and one from a non-human 
primate) were isolated from the diagnostic service of Fundação 
Ezequiel Dias, the State Reference Laboratory of Minas Gerais, 
Brazil. Viral isolation was confirmed by indirect immunofluo-
rescence (IFA), showing the typical signal of fluorescence for 
both isolates (Figure 1B and C). Both samples were successfully  
sequenced with PGM (Personal Genome Machine) technology 
with adapted overlapping multiplex PCR protocol, as shown in  
Table 2. The phylogenetic analysis showed that the isolates  
obtained from the two samples (M377_IV and M127_IV) belonged 
to the South American genotype I and clustered closely with strong 
bootstrap support (>90%) with the recent sequences, isolated in 
Minas Gerais, from the current outbreak (Figure 2)28.

Wolbachia density
Absolute quantification of Wolbachia in mosquitoes were 
analyzed in the heads + thoraces of Wolbachia-positive  
mosquitoes (wMel +) after challenge with YFV. There was 
no difference in Wolbachia density among heads and thora-
ces, collected at 7 or 14 days post feeding (dpf), as shown in  
Figure 3A. However, Wolbachia density presented a slight  
reduction at 21dpf, which was statistically significant in rela-
tion to 14dpf (p = 0.0062, Mann Whitney). The median at 14dpf  
was 2.04 × 106 copies per head/thorax whereas at 21dpf, it  
decreased to 1.37 × 106.

Wolbachia reduces susceptibility of Ae. aegypti to YFV 
infection
In mosquitoes without Wolbachia (WT) the prevalence of YFV 
infection of heads + thoraces was 30–45% at 7dpf, and 80-89% 
at 14dpf. For those mosquitoes that received a 2nd blood meal, 
the prevalence was 89 to 94% at 14dpf and 85 to 100% at 
21dpf. There was no significant difference between infection 
rates resulting from the human or primate virus isolates  

Table 1. Sequence of primers and probes used in this study.

Sequence 5’→3’ Reference

YFV Forward GCTAATTGAGGTGYATTGGTCTGC 19

YFV Reverse CTGCTAATCGCTCAAMGAACG

YFV Probe FAM/ATCGAGTTG/ZEN/CTAGGCAATAAACAC/3lABkFQ

WSPTM2 Forward CATTGGTGTTGGTGTTGGTG 15

WSPTM2 Reverse ACACCAGCTTTTACTTGACCAG

WSPTM2 Probe CY5/TCCTTTGGA/TAO/ACCCGCTGTGAATGA/3lAbRQSp

RPS17 S Forward TCCGTGGTATCTCCATCAAGCT 29

RPS 17S Reverse CACTTCCGGCACGTAGTTGTC

RPS17 S Probe HEX/CAGGAGGAG/ZEN/GAACGTGAGCGCAG/3lABkFQ
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Figure 1. Yellow fever virus (YFV) immunofluorescence in C636 cells. (A) Control cells without virus, (B) cells infected with YFV 377 H and 
(C) cells with YFV127 P. Green fluorescence depicts YFV in cells marked with a monoclonal YFV antibody conjugated goat anti-mouse IgG 
labeled with fluorescein FITC.

Table 2. Main results obtained by sequencing.

Sample ID Acession number 
(GenBank)

CT value Coverage Mean deph N° of reads Mapped reads Mean mapping 
quality

M377_IV MK249065 13.82 92.5% 4,004 X 218,811 216.613 (99%) 37

M127_IV MK249066 16.68 93% 6,640 X 361,806 358.522 (99%) 37.02

Figure 2. Maximum likelihood phylogeny obtained using two novel complete yellow fever virus sequences plus 126 YFV reference 
sequences from each different genotype (South American I; South American II; West African; East African). ML showing the two newly 
genomes belongs to South American I (SA1) genotype. SA2, WAfr, and EAfr indicate the South America II, West Africa, and East Africa 
genotypes, respectively. The scale bar is in units of substitutions per site (s/s). Node labels indicate bootstrap support values.17DD, the 
vaccine strain used in Brazil.
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(Figure 3). In heads + thoraces of Wolbachia-positive mosquitoes 
(wMel +) the infection rate ranged from 0 to 15% at 7dpf, 11 to 
16% at 14dpf, 20 to 32% at 14dpf when mosquitoes received 
a second blood meal, and 20 to 25% at 21dpf (Figure 3).  
Again, there was no major difference between viral isolates.

The infection rate observed at 7dpf was low for both viral  
isolates (Figure 3B). At day 7, the presence of Wolbachia was 
already associated with a marked decrease in viral titers in  
mosquitoes (Figure 3B). At 14dpf, there was a significant increase 
in the number of viral copies in WT mosquitoes (Figure 3C). 
Further increase on viral load was observed when mosquitoes 
received a second blood meal 7 days after the infective meal and  
were analyzed at 14 dpf. This increase was statistically  
significant for both isolates (p <0.01, Mann Whitney). This may 
have been due to the fact that the second blood supplied extra  
important nutrients for viral replication. At 21dpf, the  
infection reached 100% for the human isolate with a median of 

3.15 × 107 viral copies. For the primate isolate, although the infec-
tion rate was lower (85%), the viral load was higher with a median 
of 5.61 × 107 viral copies per head/thoraces. Regardless of the 
strain of virus used, viral loads were remarkable lower in presence 
of Wolbachia at all time points (Figure 3B–D). In addition, 
there was no increase in viral load in wMel + mosquitoes after  
supplying a second blood meal (Figure 3C).

Virus transmission through saliva
Next, we evaluated the ability of orally infected mosquitoes 
to transmit the virus. We first collected saliva from infected  
mosquitoes at 14 dpf, from both groups of mosquitoes and virus 
isolates. We then injected a number of saliva samples into eight 
naïve (WT) mosquitoes and, after five days, we checked whether  
those mosquitoes became infected through RT-qPCR,  
demonstrating that a particular saliva was infectious. As shown in  
Figure 4, when saliva samples originated from wMel + mos-
quitoes, no mosquitoes became infected. This assay shows,  

Figure 3. Interference of Wolbachia towards yellow fever virus and Wolbachia absolute quantification. Wild type (WT) or positive (wMel +)  
were orally infected with two YFV isolates and virus dissemination in mosquitoes was analyzed at different times post infection. (A) YFV 
infected mosquitoes’ heads and thoraces were analyzed for Wolbachia density at different times post-infection through real time RTq-PCR, 
based on a Wolbachia standard curve. (B) Analysis of 7dpf p=0.0012, (C) 14dpf **** p<0.0001 and YFV Human ** p=0.0050, YFV Primate 
** p=0.0046 and (D) 21 dpf **** p=0.0001. Empty black circles and triangles are WT mosquitoes, whereas empty green circles and triangles 
depict mosquitoes with wMel +. Black filled circles and triangles are mosquitoes that received a second blood meal. The red line indicates 
the median YFV copies. Red lines indicate the median wMel copies. ** p=0.0062; analysis performed through the Mann-Whitney U test.
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indirectly, the potential of Wolbachia to completely abrogate 
YFV transmission potential of Ae. aegypti mosquitoes.  
Nevertheless, saliva originating from WT mosquitoes was able  
to infect 20% of the naïve-injected mosquitoes.

Similar experiments were performed by injecting saliva sam-
ples from either the WT or wMel + groups into 4-week-old 
A129-/- mice, which are susceptible to arboviral infections30,31. 
Results showed that there was no major impact on clinical and 
laboratory parameters, which is consistent with the relatively low 
number of viable virus injected (Figure 5A–D). However, there  
were viable viruses, as assessed by plaque assay, recovered from 
the paw of mice inoculated with saliva from WT mosquitoes. 
Indeed, there was culturable virus when both P (primate) and 
H (human) strains were used. In contrast, none of the samples 
from the wMel + groups were positive on the plaque assay  
(Figure 5E–H). Consistently with the mosquito saliva findings 
above, there were higher number of viral RNA copies in drain-
ing lymphnode and liver from mice injected with WT saliva 

than mice inoculated with wMel + saliva (Figure 5 I–K). Virus  
isolated from the primate (YFV127P) showed greater presence in  
liver while the human strain (YFV377H) was more localized at  
the lymphoid tissue (Figure 5).

Collectively these results suggest that Wolbachia-positive mos-
quitoes can efficiently suppress YFV replication and reduce virus 
transmission through saliva.

Discussion
The ability of Wolbachia to reduce the susceptibility of 
Ae. aegypti to disseminated arbovirus infection has been  
repeatedly demonstrated for dengue15, Zika16, chikungunya17, West 
Nile32 and mayaro virus26. We have shown that wMel was able  
to significantly reduce the infectivity of YFV to mosquitoes, 
independently of the source of the virus (both human and 
primate). Previously, it has been shown that two strains of  
Wolbachia (wMelPop and wMel) were able to significantly  
reduce YFV mosquito infection, although with virus isolated  

Figure 4. Indirect evaluation of yellow fever virus (YFV) transmission through mosquito saliva. Saliva from both groups of infected 
mosquitoes were collected at 14 dpf. Individual saliva samples (WT or wMel +) were injected into eight naïve (WT) mosquitoes (bars) and, after 
five days, these injected mosquitoes were analyzed. (A) Mosquitoes injected with wMel+ mosquito saliva or (B) WT mosquitoes, challenged 
with human virus. (C) Mosquitoes injected with wMel+ mosquito saliva or (D) WT mosquitoes, challenged with primate virus. Values below 
each bar depicts the viral load of each mosquito head and thorax which donated that saliva. Positive mosquitoes were quantified through 
qPCR and the grey-scale represents the number of YFV copies (0 to 106 copies), per mosquito.
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Figure 5. Saliva from Wolbachia-positive mosquitoes lose its capacity to transmit yellow fever virus in vivo. A129-/- mice were 
inoculated with 1 × 104 PFU of YFV primate (empty blue circles) and human YFV (empty red circles) or with a pool of saliva from wild tipe 
(WT) YFV primate (full blue circles), WT YFV human (full red circles), Wolbachia-positive (wMel +) YFV primate (empty blue squares) and  
Wolbachia-positive YFV human (empty red squares) previously infected with YFV via intraplantar route (50 μl/paw). Control mice (MOCK 
group) received 50 μl of PBS solution (empty black circle). (A) Body weight analysis shown as body weight (g) of mice. (B) Paw volume 
measured daily and shown as swelling (mm2). On day 4 post-infection mice were euthanized and the following analysis performed.  
(C–D) Total and differential leukocyte counts in the blood. (E–H) Viable viral loads recovered from paw (E), spleen (F), liver (G) and brain 
(H) by plaque assay in Vero cells. Results are shown as Log PFU/g of tissue. (I–K) Viral RNA copies recovered from popliteal lymph node  
(I), liver (J) and spleen (K) by RT-qPCR. Data was presented as mean±SEM or median (n=4 mice for MOCK, n=6 mice for WT P, wMel + P, 
WT H and wMel + H groups and n=4 for YFV P and YFV H, one-way anova).
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from human cases from Nigeria and Bolivia, in 1987 and 1999, 
respectively33. Here we evaluated the effect of Wolbachia (wMel 
strain) towards two recently isolated yellow fever viruses,  
originating from the 2017–2018 outbreaks in Brazil. The  
yellow fever virus isolates used here have different origins, one  
originating from a non-human primate found in the city of 
Nova Lima and another originated from a human case in the  
city of Padre Paraíso, both in the state of Minas Gerais. Although 
these cities are located more than 500 km apart, they belong 
to the same genotype. Besides working with recently isolated 
virus from human and primate sources, the difference in the 
present study refers to the way mosquitoes have been infected.  
Furthermore, this study was performed with orally infected  
mosquitoes, which is closer to natural conditions, in comparison  
to the previous study which infected mosquitoes through thorax 
injection, in order to improve mosquito infection34.

The use of Wolbachia as an arbovirus control strategy has  
been developed by the not-for-profit initiative, the World  
Mosquito Program. The approach offers the prospect of a natu-
ral and sustainable method for arbovirus control34–37. The impact 
towards reduction of arbovirus has been analyzed38,39 and early 
indication of positive effect has been recently reported40. In  
Brazil, WMP is expanding its coverage into Rio de Janeiro and 
Niterói municipalities and epidemiological studies in order to  
determine arbovirus reduction is underway.

The blocking ability conferred by Wolbachia has been directly 
related to the density of the bacterium within main mosquito  
tissues such as midgut and/or salivary glands15,41, where viruses 
replicate to further produce infectious particles42. In our study, 
and as observed by Pereira et al., 201826, the density of Wolbachia  
was constant at 7 or 14 days after virus exposure. However, 
there was a reduction of wMel + density at 21dpf, which did not 
impact the blocking ability towards the virus (Figure 3). The 
variation on the density (or titer) of Wolbachia within the host 
has been previously observed, which could be related to the  
aging of the host41.

In the present study, the presence of Wolbachia in mosqui-
toes greatly reduced YFV infection, except for 7dpf, when the  
infection rate was low in all groups. Further effect of Wolbachia 
towards YFV was verified when individually collected  
mosquito saliva was injected into naïve mosquitoes or into a sus-
ceptible mice strain and their infectivity was analyzed. This first 
technique has been widely used by our group and others16,26,43, 
and it is a robust proxy of the potential of individual saliva 
towards virus transmission. When the source of saliva came from  
Wolbachia-positive mosquitoes, there was no infection in any 
injected mosquito. Through projection of these results into  
natural conditions, the YFV transmission could be greatly  
reduced, as previously modeled for dengue virus38.

Another interesting fact of this work was the increase in viral 
load observed after the second blood feeding in WT mosquitoes. 
This same fact was not observed in wMel + mosquitoes. This 
shows that the blocking ability of Wolbachia persists even after 
the addition of extra blood nutrients (through a second blood 

meal) and that its blocking effect occurs within 7 days after  
infection. Interestingly, in our experiments, the overall infectiv-
ity in mosquitoes was not high, even in control (no Wolbachia)  
mosquitoes. This shows the reduced vector competence of natu-
ral Brazilian Ae. aegypti populations, which could explain why  
most of the cases reported on the recent outbreaks in Brazil were 
in proximity to green areas of parks and forests, where natural 
YFV mosquito vectors such as Haemagogus and Sabethes are  
easily found11,12,44.

Our results show that the presence of wMel strain of Wolbachia 
in mosquitoes has the potential to greatly reduce the transmis-
sion potential of Ae. aegypti for YFV. It is important for public 
health agencies of arbovirus endemic countries to have constant 
awareness of the potential of Ae. aegypti to become an urban 
vector for yellow fever once again6,45. If that becomes reality,  
Wolbachia-infected mosquitoes could be a powerful tool for 
YFV control, along with the currently applied vaccination  
program10,46. Integration of complementary strategies are the best 
solution for arbovirus control.
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